Fuerzas Militares en conflictos de zona gris: influencia de la logística como capacidad dinámica
DOI:
https://doi.org/10.25062/2955-0289.4969Palabras clave:
amenazas, capacidades dinámicas, conflicto en zona gris, guerra híbrida, logísticaResumen
Los conflictos se están transformando de cinéticos a no cinéticos, es decir, que no emplean herramientas de violencia física directa. Tal es el caso de las amenazas en zona gris, lo que hace que, también desde la logística, se busquen estrategias que ayuden a enfrentar dichas amenazas. Por ello, el objetivo de esta revisión es analizar la influencia de la logística como capacidad dinámica de las Fuerzas Militares en amenazas en zona gris a través de casos puntuales. Para alcanzar el objetivo, se empleó la metodología PRISMA 2020. Los hallazgos principales fueron que existen diferentes amenazas en conflictos de zona gris, como: conflictos étnicos, defensa total activa para hacer frente a ataques diversos, reducción del espacio pesquero, energía como el sector crucial de las herramientas económicas y militarización del comercio.
Biografía del autor/a
Juan Carlos Aristizabal Murillo, Escuela Superior de Guerra General Rafael Reyes Prieto
Doctorando en Gestión. Magíster en Educación con énfasis en Ciencias Económicas y Administrativas. Especialista en Docencia e Investigación Universitaria. Administrador de empresas. Profesional en Ciencias Militares. Docente e investigador, Escuela Superior de Guerra “General Rafael Reyes Prieto”.
Referencias bibliográficas
Badakhshan, E., & Ball, P. (2024). Deploying hybrid modelling to support the development of a digital twin for supply chain master planning under disruptions. International Journal of Production Research, 62(10), 3606-3637. https://doi.org/10.1080/00207543.2023.2244604
Barreto, I. (2010). Dynamic capabilities: A review of past research and an agenda for the future. Journal of Management, 36(1), 256-280. https://doi.org/10.1177/0149206309350776
Belo, D., & Carment, D. (2023). Ethnic conflict and modern warfare. En Routledge handbook of the future of warfare. Routledge.
Cannas, V. G., Ciano, M. P., Saltalamacchia, M., & Secchi, R. (2024). Artificial intelligence in supply chain and operations management: A multiple case study research. International Journal of Production Research, 62(9), 3333-3360. https://doi.org/10.1080/00207543.2023.2232050
Castañé, G., Dolgui, A., Kousi, N., Meyers, B., Thevenin, S., Vyhmeister, E., & Östberg, P.-O. (2023). The ASSISTANT project: AI for high level decisions in manufacturing. International Journal of Production Research, 61(7), 2288-2306. https://doi.org/10.1080/00207543.2022.2069525
Chen, W.-C., Ou, C.-H., Yang, M.-H., & Shih, Y.-C. (2024). China’s gray zone actions in the East China Sea, Taiwan Strait, and South China Sea: A comparative study and impact on fisheries. Marine Policy, 167, 106246. https://doi.org/10.1016/j.marpol.2024.106246
Easterby-Smith, M., Lyles, M. A., & Peteraf, M. A. (2009). Dynamic capabilities: Current debates and future directions. British Journal of Management, 20(s1), S1-S8. https://doi.org/10.1111/j.1467-8551.2008.00609.x
Enamorado, J., & Jesús, J. (2020). International competition below the threshold of war: Toward a theory of gray zone conflict. https://doi.org/10.5038/1944-0472.14.1.1836
Geri, M. (2024). Understanding Russian hybrid warfare against Europe in the energy sector and in the future ‘energy-resources-climate’ security nexus. Journal of Strategic Security, 17(3), 15-34. [suspicious link removed]
Ii, A. J. E. (2025). Operating in the gray zone: An alternative paradigm for U.S. military strategy.
Kohtamäki, M., Parida, V., Oghazi, P., Gebauer, H., & Baines, T. (2019). Digital servitization business models in ecosystems: A theory of the firm. Journal of Business Research, 104, 380-392. https://doi.org/10.1016/j.jbusres.2019.06.027
Kurtmollaiev, S. (2020). Dynamic capabilities and where to find them. Journal of Management Inquiry, 29(1), 3-16. https://doi.org/10.1177/1056492617730126
Ljungkvist, K. (2024). The military-strategic rationality of hybrid warfare: Everyday total defence under strategic non-peace in the case of Sweden. European Journal of International Security, 9(4), 533-552. https://doi.org/10.1017/eis.2024.18
McDonagh, N., & Bachmann, S.-D. D. (2025). Economic coercion and gray zone competition: Reassessing the China-Australia case. Pacific Affairs, 98(1), 53-77. https://doi.org/10.5509/2025981-art5
Merhi, M. I., & Harfouche, A. (2024). Enablers of artificial intelligence adoption and implementation in production systems. International Journal of Production Research, 62(15), 5457-5471. https://doi.org/10.1080/00207543.2023.2167014
Morris, L., Mazarr, M., Hornung, J., Pezard, S., Binnendijk, A., & Kepe, M. (2019). Gaining competitive advantage in the gray zone: Response options for coercive aggression below the threshold of major war. RAND Corporation. https://doi.org/10.7249/RR2942
Olan, F., Liu, S., Suklan, J., Jayawickrama, U., & Arakpogun, E. O. (2022). The role of Artificial Intelligence networks in sustainable supply chain finance for food and drink industry. International Journal of Production Research, 60(14), 4418-4433. https://doi.org/10.1080/00207543.2021.1915510
Onditi, F., McLarren, K., Ben-Nun, G., Stivachtis, Y. A., & Okoth, P. (Eds.). (2023). The Palgrave handbook of diplomatic thought and practice in the digital age. Springer International Publishing. https://doi.org/10.1007/978-3-031-28214-0
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., & Alonso-Fernández, S. (2021). Declaración PRISMA 2020: Una guía actualizada para la publicación de revisiones sistemáticas. Revista Española de Cardiología, 74(9), 790-799. https://doi.org/10.1016/j.recesp.2021.06.016
Papadopoulos, T., Sivarajah, U., Spanaki, K., Despoudi, S., & Gunasekaran, A. (2022). Editorial: Artificial intelligence (AI) and data sharing in manufacturing, production, and operations management research. International Journal of Production Research, 60(14), 4361-4364. https://doi.org/10.1080/00207543.2021.2010979
Sharma, R., Kamble, S. S., Gunasekaran, A., Kumar, V., & Kumar, A. (2020). A systematic literature review on machine learning applications for sustainable agriculture supply chain performance. Computers & Operations Research, 119, 104926. https://doi.org/10.1016/j.cor.2020.104926
Teece, D. J. (2007). Explicating dynamic capabilities: The nature and microfoundations of (sustainable) enterprise performance. Strategic Management Journal, 28(13), 1319-1350. https://doi.org/10.1002/smj.640
Wang, C. L., & Ahmed, P. K. (2007). Dynamic capabilities: A review and research agenda. International Journal of Management Reviews, 9(1), 31-51. https://doi.org/10.1111/j.1468-2370.2007.00201.x
Yu, M., & Cao, E. (2020). Information sharing format and carbon emission abatement in a supply chain with competition. International Journal of Production Research, 58(22), 6775-6790. https://doi.org/10.1080/00207543.2019.1685704
Zollo, M., & Winter, S. G. (2002). Deliberate learning and the evolution of dynamic capabilities. Organization Science, 13(3), 339-351. https://doi.org/10.1287/orsc.13.3.339.2780
Cómo citar
Descargas
Descargas
Publicado
Número
Sección
Licencia
Derechos de autor 2025 Revista Estrategia, Poder y Desarrollo

Esta obra está bajo una licencia internacional Creative Commons Atribución-NoComercial-SinDerivadas 4.0.









